Showing posts with label DEM. Show all posts
Showing posts with label DEM. Show all posts

Sunday 11 November 2018

QUESTION : EXPLAIN BASIC RULES IN PRACTICE WHEN CONDUCTING A LEVELING


1.     EXPLAIN BASIC RULES IN PRACTICE WHEN CONDUCTING A LEVELING
    Image result for reciprocal levelling
                Levelling is the process of measuring the difference in elevation between two or more points. In engineering surveying, levelling has many application and is used at all stages in construction projects from the initial site survey through the final setting out. In practice, it is possible to measure heights to better than a few millimeters when levelling  this precision  is more than adequate for height measurement on the majority of civil engineering project.
Image result for reciprocal levelling
The basic rules in practice when conducting a levelling fieldwork should be adhered to if many of the sources of error are to be avoided. Levelling should always start and finish  at points of known reduced level so that misclosures can be detected. When only one bench mark is available, levelling lines must be run in loops starting and finishing at the bench mark. 
Image result for reciprocal levelling
Where possible, all sights length should below 50m. The staff must be held vertically by suitable use of a circular bubble or by rocking the staff and notong the minimum reading. Backsight and fortsight length should be equal for each instrument position. For engineering application, many intermediate sight readings may be taken from each set- up. Under this circumstances it is important that the level has no more than a small collimation error. 
Image result for reciprocal levelling
Reading should book immediately after they are observed and important readings, particularly at change points, should be checked. The rise and fall method of reduction should used when heighting reference or change  points and the HPR method ( height of collimation) should be used for contouring , sectioning and setting out applications.
Image result for reciprocal levelling

Friday 4 November 2016

What is a DEM (Digital Elevation Model

What is a DEM (Digital Elevation Model)?

Image result for Digital Elevation Model

Digital Elevation Models are data files that contain the elevation of the terrain over a specified area, usually at a fixed grid interval over the surface of the earth. The intervals between each of the grid points will always be referenced to some geographical coordinate system. 
Image result for Digital Elevation ModelImage result for Digital Elevation Model
This is usually either latitude-longitude or UTM (Universal Transverse Mercator) coordinate systems. The closer together the grid points are located, the more detailed the information will be in the file. The details of the peaks and valleys in the terrain will be better modeled with a small grid spacing than when the grid intervals are very large. Elevations other than at the specific grid point locations are not contained in the file. As a result peak points and valley points not coincident with the grid will not be recorded in the file.
Image result for Digital Elevation Model
The files can be in either ASCII or binary. In order to read the files directly you must know the exact format of the entire file layout. Usually the name of the file gives the reference location to some map corner point in the file. The files usually contain only the z value (elevation value) and do not contain the actual geographical location that is associated with that point. 

The actual location associated with that elevation data is calculated by software reading the actual DEM file, knowing the precise location of the data value inside the DEM file. In addition, there will be some needed reference information in the header (first part) of the file. When an elevation is calculated at locations other than the actual grid points, some method of interpolation from the known grid points is used. Again, this is done in software that is external to the actual DEM file.

The DEM file also does not contain civil information such as roads or buildings. It is not a scanned image of the paper map (graphic). It is not a bitmap. The DEM does not contain elevation contours, only the specific elevation values at specific grid point locations.
Image result for Digital Elevation Model

Some companies chose to encrypt their DEMs, thereby prohibiting you from making your own files, converting data from other sources or allowing you access to data files that were provided from anyone other than that software vendor. SoftWright maintains an open architecture on all our data files. Details for all DEM file formats that SoftWright supports are available to any of our customers.